On the Choice of Boundary Conditions in Continuum Models of Continental Deformation
نویسندگان
چکیده
Recent studies of continental deformation have treated the lithosphere as a viscous media and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. We examine the differences between continuum models that keep velocity boundary conditions (b.c.) constant with time and models that keep stress b.c. constant with time and demonstrate these differences by using a simple example of a continental lithosphere that is subjected to horizontal compression. Our results show that in the case of constant stress b.c., the indentation velocity decreases with time, while in the case of constant velocity b.c., the indentation velocity remains constant with time. Observations from the Tibetan plateau and from the Andes indicate that the rate of indentation decreases with time. This suggests that when buoyancy forces are comparable in magnitude to tectonic forces, constant stress b.c. are more appropriate for time evolutionaxy models of continentel lithosphere. We propose a simple procedure that translates velocity b.c., which are easy to estimate, into stress b.c. at the initial stage, and keep the stress b.c. constant along the time progression of the calculations.
منابع مشابه
Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
متن کاملSmart Vibration Control of Magnetostrictive Nano-Plate Using Nonlocal Continuum Theory
In this research, a control feedback system is used to study the free vibration response of rectangular plate made of magnetostrictive material (MsM) for the first time. A new trigonometric higher order shear deformation plate theory are utilized and the results of them are compared with two theories in order to clarify their accuracy and errors. Pasternak foundation is selected to modelling of...
متن کاملFree Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories
In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملFree Vibration of a Thick Sandwich Plate Using Higher Order Shear Deformation Theory and DQM for Different Boundary Conditions
In this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plate is presented using the higher order shear deformation theory. The face sheets are orthotropic laminated composites that follow the first order shear deformation theory (FSDT) based on the Rissners-Mindlin (RM) kinematics field. The motion equations are derived considering the c...
متن کامل